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Abstract

Unmanned aerial vehicles (UAV) require intelligent control of their power source. Small

UAV are typically powered by electric motors or small two-stroke internal combustion (IC)

engines. Small IC engines allow for longer flight times but are more difficult to control and

cause significant ground noise. A hybrid operation that uses the engine at high altitudes

and the electric motors at low altitudes is desired. This would allow for extended flight with

acceptable ground noise levels. Since the engine can not be restarted in the air it must be

able to remain at idle for an extended time without stalling. A feedback controller is created

for an OS160FX carbureted two-stroke engine. The controller implements a Proportional-

Integral-Derivative (PID) algorithm to regulate the rotational speed of the engine shaft.

The controller also monitors the temperature of the engine and is capable of monitoring

the altitude of the aircraft. It is constructed with commercially available components and

is based on an open-source micro-controller. The engine and the controller were ground

tested to determine the engine’s performance characteristics and the appropriate tuning

parameters of the PID algorithm. The controller allows the engine to idle at 1800 rpm

without stalling. The controller is able to quickly respond to changes in the commanded

speed and settle on this speed within 10 seconds. The speed is regulated through the

engine’s full range of speeds. The performance of the controller was found to be negatively

affected by sub-optimal carburetor fuel-valve settings.
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1 Introduction

1.1 Background

In recent years there have been efforts to develop small unmanned aerial vehicles (UAV)

capable of extended flight. UAV have piloting systems with embedded intelligence that

determines the trajectory of the aircraft [1]. The piloting system or auto-pilot sends the

appropriate commands to the aircraft’s power source required to maintain the desired flight

speed. Small aircraft typically rely on propeller propulsion that is powered by electric

motors or small internal combustion (IC) engines.

Electric motors have the advantage of simple control, quiet operation, and low

maintenance. Small IC engines allow for longer flight times than electric motors but are

more difficult to control. Their performance is dependent on ambient temperature,

altitude, and fuel flow. They also generate significant ground noise and require regular

maintenance.

A UAV was developed at the University of Nevada, Las Vegas through a 2007 research

grant from the Air Force Research Laboratory [1]. The UAV can be powered by a single

small two-stroke diesel engine or by two small electric motors. The current piloting system

on the UAV sends operating commands to the engine in the form of throttle position. The

next step in this research is to design and build a digital feedback controller that can bring

the engine to a rotational speed commanded by the auto-pilot and maintain that speed.

At high altitudes the ground noise generated by an engine is less than at low altitudes.

1
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A hybrid operation that uses an IC engine at high altitudes and switches to the electric

motors at low altitudes would potentially allow for acceptable ground noise levels and

extended flight. The IC engines on small aircraft typically are started by hand and can not

be re-started in flight. This means that the engine must run at idle while the electric motors

are operating. The engine is at idle when it is rotating at its lowest running speed. At this

speed the engine does not produce significant thrust. The noise created by the engine is

significantly lower when idling then when running at high speeds so this is an acceptable

operation. This hybrid operation requires an engine that will run steadily at low speeds

without stalling. The new engine controller should allow for this hybrid operation.

1.2 Research Objectives

The main objective of this research was to build and implement an inexpensive digital

feedback controller that regulates the speed of a small two-stroke IC engine that propels a

small UAV. The representative engine was the O.S. Engines 160FX (OS160FX)

carbureted two-stroke engine that is popular in the recreational aircraft community. It

was desired that the controller hardware be based on commercially available parts that

can be adapted for use on engines comparable to the OS160FX. The controller software

and the implemented control algorithm were to be written so that they could easily be

adapted by future operators. The requirements for the engine controller were that it allow

the engine to quickly and reliably change to a desired speed and maintain that speed

within a defined tolerance. Another requirement for the engine controller was that it allow

2
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the engine to idle for an extend period without stalling. The controller also had to

monitor the temperature of the engine and the altitude of the aircraft.

A secondary objective was to determine the sensitivity of the controller to carburetor

settings. The carburetor on the OS160FX and other small two-stroke engines is typically

adjusted or ‘tuned’ manually in the field. These tunings are crude and require an

experienced operator to perform. Minor adjustments can cause significant variations of

the engine’s performance characteristics.

1.3 Research Methodology

The first step to achieving the research goals was to set up a facility to test the engine

on the ground. For this research the engine was not tested on an aircraft in flight. The

facility chosen was a garage area that had adequate ventilation. A test stand was built that

supports the engine, fuel tank, and controller hardware.

The next step was to set up a control system that could adjust the engine’s throttle and

monitor the engine’s performance. The control system consisted of the engine controller

and a ground station that communicated wirelessly. The engine controller was based on

an Arduino micro-controller which read the sensors, implemented the control algorithm,

and sent a control signal to a small DC servo motor that served as the throttle actuator.

The throttle position was set manually by entering commands in a laptop computer or was

determined by the control algorithm. The sensor values were printed to a small LCD screen

so the engine could be monitored in real-time. The sensor values and other data related to

3
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the control algorithm were logged for analysis.

After the control system was in place, the engine was put through a ‘break in’ period that

is required of new engines and the carburetor fuel valves were adjusted or ‘tuned’ to provide

optimal performance. The break-in period involved running the engine at low-speeds for

short periods of time. The speed and run-time were gradually increased as the engine ran

through several tanks of fuel. The purpose of the break-in period was to allow the engine

parts to settle together. Once the break-in period was completed the carburetor could be

tuned for optimal engine performance. The fuel valves were set so the engine could reach

high-speeds without overheating, have smooth acceleration throughout the speed range, and

idle reliably.

After the carburetor was tuned, the engine’s performance characteristics were

determined. The performance characteristics were determined by recording and analyzing

the response of the engine speed to changes in the throttle position. The test results with

different carburetor tunings were used to determine the variability in engine performance

that results from imprecise carburetor adjustments.

Next, the control algorithm was written, implemented, and tested. A

Proportional-Integral-Derivative (PID) algorithm was chosen because it can be

implemented with inexpensive micro-controllers and it is a widely adopted and proven

control method. There are three tuning parameters of the PID algorithm that must be

carefully chosen for the controller to provide acceptable control of a dynamic process.

Tests were run with different combinations of these parameters to determine a suitable

4
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setting for each parameter.

5
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2 Literature Review

2.1 Engine Theory

An internal combustion (IC) engine converts chemically bound fuel energy into mechanical

energy [2]. In an IC engine the combustion of an air-fuel mixture in a combustion chamber

and the resulting expansion of high-pressure gases drives a piston that oscillates in a

cylinder. The piston is attached to a connection rod and crankshaft linkage that translates

the reciprocating motion of the piston to the angular rotation of an output shaft [3]. On

an aircraft engine the output shaft is connected to a propeller to generate thrust [4].

The first type of IC engine is a four-stroke engine. In a four-stroke engine there are four

strokes of the piston required to complete a cycle. Each stroke performs a different function

of the cycle. The functions of an engine cycle are intake, compression, power, and exhaust.

The second type of IC engine is two-stroke engine which completes the cycle functions in

just two strokes of the piston. The two-stroke engine is smaller and simpler in operation

than the four-stroke engine and produces an equivalent amount of power [5].

2.1.1 Two-Stroke Engines

The sequence of events that occur in a typical two-stroke cycle are shown in Figure 2.1. The

cycle starts with the intake of air and fuel that have been mixed with the carburetor. As

the piston is traveling upward there is a drop in crankcase pressure. The air-fuel mixture

from the carburetor, driven by the difference between atmospheric and crankcase pressures,

enters the crankcase. This air-fuel mixture remains in the crankcase until the piston opens
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Figure 2.1: Sequence of events in a two-stroke engine cycle from [5].

up the transfer port on the down-stroke. Once the transfer port is open the air-fuel mixture

in the crankcase, which has been compressed by the piston, rushes into the combustion

chamber. This mixture is further compressed during the upstroke of the piston until it

ignites due to the heat of compression or spark ignition. The combustion of the air-fuel

mixture produces high pressure gases that expand rapidly and force the piston downward.

As the piston moves downward it uncovers the exhaust port which allows the products of

combustion to exit the chamber. The compression and intake functions both occur on the

up stroke while the power and exhaust function both occur on the down stroke or power

stroke [5].
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2.1.2 Scavenging Theory

The process of pushing out exhaust gases and drawing in a fresh air-fuel mixture is called

scavenging. In a properly scavenged engine all exhaust gases are pushed out of the

combustion chamber and a fresh air-fuel mixture is drawn in from the crankcase. The two

main types of scavenging configurations are cross-scavenging and loop-scavenging. On a

cross-scavenged engine the transfer port is positioned directly across from the exhaust

port. A baffle on the piston head deflects the air-fuel charge upward to prevent it from

flowing directly out the exhaust port [5]. There is significant mixing between the exhaust

gases and the fresh air-fuel mixture in cross-scavenged engines and some exhaust gases

remain in the combustion chamber. A loop-scavenged engine directs the incoming air-fuel

mixture in a looping path that pushes the exhaust gases out of the combustion chamber

with less mixing than a cross-scavenged engine. One type of loop-scavenging is Schnuerle

scavenging. A Schnuerle scavenged (ported) engine has two transfer ports angled away

from the exhaust port that direct the air flow upward in a looping path. Some Schnuerle

scavenged engines have an additional boost-port opposite the exhaust port [6].

2.1.3 Carburetor Theory

Small two-stroke engines typically use a carburetor to prepare the air-fuel mixture that

enters the engine crankcase. A diagram of a basic carburetor is shown in Figure 2.2. There

are many carburetor designs of varying complexity but the general concept is as follows. A

throttle valve controls the mass flow rate of air through the carburetor inlet. The intake air
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flows through a converging-diverging nozzle called a venturi which increases the air velocity.

The higher air velocity corresponds with a drop in pressure. The pressure difference created

between the air inlet and the throat of the venturi draws in fuel through a discharge port

near the throat distributing the fuel across the air flow. The pressure difference, which

depends on the air flow rate, is used to regulate the fuel flow. A higher air flow rate will

Figure 2.2: Basic carburetor from [7].

cause a rise in the pressure difference. Thus a carburetor provides a different air-to-fuel

ratio (AFR) at different speeds and operating conditions. The stochiometric ratio is the

AFR that provides just enough air in the mixture for complete combustion of the fuel. An

AFR below the stochiometric ratio is considered ‘rich’ and an AFR above the stochiometric

ratio is considered ‘lean’. A basic carburetor can not provide an optimal AFR over the

whole engine load range [3]. Since most two-stroke engines use the fuel for lubrication and

coolant the AFR is kept rich. The typical carburetor on a small aircraft engine has fuel

valves that must be tuned correctly to provide acceptable performance through the entire

speed range.
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2.1.4 Ignition Theory

There are three main types of engines used in small aircraft: spark-ignition, compression

ignition, and glow ignition. Spark ignition engines trigger combustion by activating an

electric discharge in a spark plug . A gasoline engines rely on spark ignition. Compression

ignition engines compress the air so intensely that the temperature generated is greater than

the ignition temperature of the fuel. The diesel engine cycle utilizes compression ignition

[2].

Glow-ignition engines run on a nitromethane-methanol blend of fuel with an ignition

temperature that cannot be reached through compression alone. A glow plug located at

the top of the combustion chamber is utilized to help ignite the air-fuel mixture. When an

electric current is applied to a glow plug, a platinum coiled-wire element incandesces and

produces temperatures that exceed 1,500 degrees Fahrenheit. During the engine operation

there is an exothermic reaction that takes place between the platinum in the coil and

methanol vapor that further increases the temperature of the coil. The engine is started

by turning the engine by hand or with an electric starting motor. The combination of the

glow plug and the compression of the mixture causes ignition. Once the engine has been

started the electric current can be removed and the engine will continue to fire due to the

heat from the exothermic reaction [8].

The fuel requirement of an engine depends on its ignition method. Compression engines

require a fuel that is highly ignitable. Spark ignition engines require a fuel that is ignition

resistant so that auto-ignition does not cause uncontrolled combustion [2].
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2.1.5 Glow Engines

The test engine used in this study is a carbureted, glow-ignition, Schnuerle ported, two-

stroke engine. This type of engine will be referred to as a ‘glow engine’. Glow engines are

commonly used on small aircraft because they are small, lightweight, simple in operation,

and provide satisfactory performance.

2.2 Control Theory

The engine controller designed and implemented in this research implements Proportional-

Integral-Derivative (PID) control which is a form of feedback control. A feedback control

system makes corrective actions based on the difference between a desired quantity of a

dynamic process and the actual measured quantity. A feedback control system is a closed

loop system. A closed-loop system consists of two (or more) systems that are interconnected

in a cycle. If there is no interconnection the system is an open-loop system. Figure 2.3

shows the idea of an open-loop system and a closed-loop system. In the closed-loop system

the output of system one is the input of system two and the output of system 2 is the input

of system one. In an open-loop system the first system is not affected by the second [9].

u
System 2System 1

y

(a) Closed loop

System 2System 1
ur

(b) Open loop

Figure 2.3: Open loop system vs. a closed loop system from [9].

In a typical feedback control system the two systems are the controller and the
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process. Feedback control is necessary to account for disturbances and changes in the

process dynamics [10]. A classic example of feedback control is the cruise control system

found in modern cars. The purpose of a cruise control system is to maintain a speed set

by the driver. It maintains this speed by varying the throttle. The correct throttle

position is determined by considering the difference between the reference speed and the

actual measured value of speed [9]. Manual control of the throttle (gas pedal) would be an

example of open-loop control.

ProcessController

Sensor

Actuator
+

-

r e u y

d

Figure 2.4: Typical feedback control block diagram adapted from [10].

Figure 2.4 shows the block diagram of a typical feedback controller where y is the

measured process variable (process output), r is the reference variable, e = r − y is the

control error, u is the control variable, and d is a disturbance signal. The reference variable

is often called the setpoint. The controller determines the value of the control variable that

will bring the process variable to the value of the reference variable and maintain that value

despite unplanned or unmeasured disturbances.
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2.2.1 PID Control Algorithm

A PID controller is a three-term controller that has become the standard feedback controller

in commercial industries. PID controllers have been widely adopted because they provide

satisfactory performance while being intuitive and relatively simple. PID controllers are

often the fundamental component of more advanced control schemes [10].

The PID algorithm consists of three terms: the proportional term (P-term), the integral

term (I-term), and the derivative term (D-term). The terms are summed to determine

the value of the control variable. The proportional, integral, and derivative terms can be

thought of as acting on the current, past, and future error respectively. Each term of this

algorithm will be discussed in detail. The full continuous-time form of the PID algorithm

is:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt
(2.1)

= Kp

(
e(t) +

1

Ti

∫ t

0
e(τ)dτ + Td

de(t)

dt

)

The parameters of the PID algorithm are the proportional gain Kp, the integral gain Ki,

and the derivative gain Kd. Sometimes the parameters of integral time Ti and derivative

time Td are used instead of integral and derivative gain [9].

2.2.2 Proportional Term

Kpe(t) (2.2)
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The proportional term shown in Equation 2.2 is proportional to the current control error.

It acts to increase or decrease the control variable in attempt to limit the future error.

The proportional term is able to provide a small control variable change when error is

small to avoid excessive effort from the actuator. The proportional gain determines how

aggressively the proportional term responds to an error. Figure 2.5 shows a simulated

response of a system with proportional control. It shows that the proportional term by

0 5 10 15 20

0

1

K = 5

K = 2

K = 1

Figure 2.5: P-term response from [9].

itself will always produce a steady-state error. A high proportional gain will give a result in

a quick response to a reference change but if the proportional gain is too high the controller

will become unstable. The steady state error is eliminated by adding the integral term [10].

2.2.3 Integral Term

Ki

∫ t

0
e(τ)dτ (2.3)

The integral term is shown in Equation 2.3. It is proportional to the integral, or continual

summation, of the control error over time. It allows the controller to account for any

unexpected or unmeasured disturbances and eliminates the steady-state error. If there is a

positive error the integral term will increase until the error is zero. A negative error causes
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the integral term to decrease. A large integral gain will allow for effective attenuation of

disturbances but too large of an integral gain will cause oscillations in the process and

control variables [10].

2.2.4 Derivative Term

Kd
de(t)

dt
(2.4)

The derivative term is shown in Equation 2.4. It is proportional to the derivative or rate of

change of the control error. The rate of change of the error can offer a prediction of error.

The derivative term has the potential to anticipate an incorrect trend in control error and

counter it. The derivative term is used to dampen an oscillatory system. The greater the

derivative gain the more damped the system becomes but performance will deteriorate if it

is too high [10].

2.2.5 Modifications of the PID Algorithm

A controller that implements the PID Algorithm as shown in Equation 2.1 will likely not

perform well. There are several issues with this standard from that must be addressed to

ensure a well performing controller [10].

The first issue that is commonly faced is a phenomenon known as integral wind-up.

Recall that the integral term sums the error history. Integral wind-up occurs when the

control variable attains the actuator limit (saturation) during a transient response. When

the controller is saturated the control error does not decrease as fast as it would otherwise.
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This causes the integral term to become large or wind up. This large integral term causes

the controller to stay saturated even if the process variable has attained the set-point value

leading to large overshoots and settling times. There are several strategies used to deal

with integral wind-up. One of which is to disable integration when the control variable

saturates. A modification of this strategy is to only stop integration when the control

variable and control error have the same sign. This allows the integral term to help bring

the control variable out of saturation. The issue of integral wind-up is not an issue when

the incremental form of the algorithm is used [10]. The incremental algorithm is explained

in Section 2.2.6

Another issue is that proportional gains required for fast disturbance rejection cause an

oscillatory response following a step change in the reference variable. A strategy for dealing

with this is to define the proportional term as follows:

u(t) = Kp(βr(t)− y(t)) (2.5)

where β is a weighting factor between 0 and 1. The weighting factor is applied to the

reference variable so that the proportional gain acts on only part of the control error during

the step change. Setpoint weighting acts to smooth the step change of the reference variable

to damp the response of the process variable[10].

While the derivative term can improve the controller performance there are critical

issues that cause it to not be frequently used. More than 80% of today’s PID controllers
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are actually PI controllers [10]. Since the derivative term responds to the rate of change of

error an abrupt reference variable change will cause the derivative to term to be large. This

causes an undesired spike of the control output during a reference variable step. This spike

is known as derivative kick. Derivative kick is solved by applying the derivative term to the

process variable instead of control error. This is referred to as derivative on measurement.

It is shown below that when the reference variable is constant that derivative of the error

is equal to the negative of the derivative of the process variable.

de(t)

dt
=
d(r(t)− y(t))

dt

de(t)

dt
=
d(0− y(t))

dt
= −dy(t)

dt
(2.6)

The derivative term also amplifies measurement noise in the manipulated variable. This

noise can result in rapid changes of the control variable that can damage the actuator [10].

The PID algorithm with derivative on measurement and setpoint weighting is

u(tk) = Kp

(
βr(tk)− y(tk) +

1

Ti

∫ t

0
e(τ)dτ − Td

dy(t)

dt

)
(2.7)

2.2.6 Algorithm Discretization

The algorithm must be transformed to a discrete form so that it can be implemented

with a digital controller. The discrete form of Equation 2.7 can be found by applying the

backwards finite difference method to the derivative and integral terms [10]. The backwards

finite difference method is a common discretization technique. The proportional term is
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discretized by replacing the continuous variables with their sampled versions. The integral

is expressed as a sum of the error history.

∫ t

0
e(τ)dτ =

k∑
i=1

e(ti)∆t (2.8)

where e(ti) is the error at the current iteration and ∆t is a predefined sample time. The

derivative term becomes:

de(t)

dt
=
e(tk)− e(tk−1)

∆t
(2.9)

where tk is the the current sampling instant, and tk−1 is the previous sampling instant. The

discrete form of equation 2.7 is

u(tk) = Kp

(
βr(tk)− y(tk) +

∆t

Ti

k∑
i=1

e(ti)−
∆Td
∆t

(y(tk)− y(tk−1))

)
(2.10)

As an alternative to equation 2.10 the control variable at time instant u(tk) can be calculated

using its value at the previous time instant u(tk−1) [10]. Subtracting u(tk−1) from u(tk):

u(tk)− u(tk−1) = Kp

(
βr(tk)− y(tk) +

∆t

Ti

k∑
i=1

e(ti)−
∆Td
∆t

(y(tk)− y(tk−1))

)

−Kp

(
βr(tk−1)− y(tk−1) +

∆t

Ti

k−1∑
i=1

e(ti)−
∆Td
∆t

(y(tk−1)− y(tk−2))

)
(2.11)
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This can be re-written as:

u(tk) = u(tk−1) +Kp (βr(tk)− βr(tk−1) + y(tk−1)− y(tk))

+Ki∆te(tk) +
Kd

∆t
(2y(tk−1)− y(tk)− y(tk−2)) (2.12)

Equation 2.12 is the incremental form of the PID algorithm. It is also known as the velocity

form. The incremental form avoids the issue of integral windup and allows for bumpless

transfer [15].
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3 Experimental Setup

The engine used in this research is a 160FX glow engine manufactured by O.S. Engines

(OS160FX). The OS160FX has a 1.6 cubic inch displacement with a power output of 3.7

horsepower at 9,000 rpm. The engine weight with muffler is 42.3 ounces. The engine has

a listed practical speed range of 1,800 rpm to 10,000 rpm [11]. The actual speed range is

dependent on fuel and the pitch and diameter of the propeller. The engine was fitted with

a 17 inch plastic propeller with a 5 inch pitch.

Figure 3.1: OS160FX Engine from [11].

A temporary facility was prepared for testing the engine. The chosen test facility was

a well ventilated garage area. A test stand was constructed and secured to the floor of the

test facility. The test stand was constructed from wood and can easily be disassembled for

transport. The top surface was covered in aluminum sheeting for easy oil cleanup. The

assembled engine, fuel tank, and controller hardware were mounted to the test stand. A 12

volt battery was placed under the test stand to provide power for the controller hardware.

The test stand with installed equipment is shown in Figure 3.2.
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Figure 3.2: Engine test stand.

3.1 Control System Setup

A control system was designed and built to control the engine and monitor its performance.

The control system consists of the engine controller and a ground station that communicates

with the engine controller and records data. The engine controller measures the rotational

speed of the engine shaft, the engine head temperature, and the barometric pressure. It

uses a servo motor to adjust the engine throttle. The components of the control system are

listed below.

• Arduino Duemilanove micro-controller (MC1)
• Arduino Mega 2560 micro-controller (MC2)
• Infrared reflectance encoder (IRE)
• K-type thermocouple wire
• MAX6675 K-Thermocouple-to-Digital Converter (MAX6675)
• MPL115A1 barometric pressure sensor (MPL115A1)
• Hitec HS-5125MG digital servo
• XBee radio modules
• 20x4 Character LCD Screen
• Laptop computer
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The Arduino Duemilanove micro-controller (MC1) takes readings from the sensors and

implements the control algorithm. The MC1 sends sensor values and control algorithm data

to the Arduino Mega 2560 micro-controller (MC2). The two micro-controllers communicate

wirelessly with a pair of XBee radio modules. The MC2 is connected to a laptop computer

and relays commands that are entered in the computer’s serial monitor to the MC1. The

MC2 also prints data received from the MC1 to a file and displays select data on the LCD

screen. A diagram of this control system is shown in Figure 3.3. A schematic of the sensor

connections to the MC1 is in Appendix B.

Figure 3.3: Diagram of the control system.

The engine controller is comprised of the MC1, the sensors, and the servo motor. The

ground station is comprised of the MC2, the LCD screen, and the laptop computer. The

MC1 has 14 digital input/output pins, 6 analog input pins, and a 16 MHz crystal oscillator

[12]. Figure 3.4 shows the wiring in the engine controller housing.
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Figure 3.4: Engine controller housing.

The throttle position was adjusted with the Hitec HS-5125MG digital servo. Servos are

small DC motors with internal circuitry that provides fine control of angular position. The

position is set by sending a digital square wave signal with a specific pulse-width to the

servo with a micro-controller. The pulse-width can be specified in microsecond increments.

The Hitec HS-5125MG has a 90° total range. This angle range corresponds to a pulse-width

range of 900 to 2100 microseconds [13]. The angular precision of the servo is 0.0750 degrees.

The engine throttle does not require the entire range of the servo. The throttle is fully closed

at 1810 microseconds and fully open at 1300 microseconds. This gives a throttle precision

of 0.2 percent. Figure 3.5 shows the servo and throttle arm linkage.

The rotational speed of the engine shaft was determined with an infrared reflectance

encoder (IRE). The IRE carries an infrared LED and photo-transistor pair that allows it to

sense the reflectance of a surface. The IRE has a voltage output of 5 volts when it detects

a surface with a reflectance below a threshold value and outputs 0 volts otherwise [14].

A mark was placed on the shaft hub with black tape that passes the IRE once per shaft
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Figure 3.5: Servo and throttle arm linkage.

revolution. As a result the MC1 receives one pulse from the IRE for each shaft revolution.

The rotational speed was calculated using the elapsed time between pulses from the IRE

or the period. The calculation of the period requires the use of hardware interrupts. The

MC1 has two pins that support hardware interrupts. Each time a pulse is received from the

IRE the program is halted while an interrupt service routine (ISR) is executed. The ISR

is simply a function that performs some action and occurs during every interrupt. During

an interrupt all other operations are paused including those responsible for timing. For

this reason ISR functions must be kept as short as possible. The ISR triggered by pulses

from the IRE calculates the time that has elapsed since the last pulse. The relationship for

calculating speed is shown in Equation 3.1.

Speed [rev/min] =
60, 000, 000 [µs/min]

Period [µs/rev]
(3.1)

The temperature of the engine head was monitored using a K-type thermocouple and

the MAX6675 K-Thermocouple-to-Digital Converter (MAX6675). The thermocouple was
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attached to a bolt near the exhaust port. It was determined with an infrared thermal camera

that the temperature at the exhaust bolt is consistently 30 degrees lower than the surface

of the engine head. The MAX6675 digitizes the voltage signal from the thermocouple and

performs cold junction compensation. It outputs the temperature with a resolution of 0.25

degrees Celsius. The barometric pressure was measured with the MPL115A1 barometric

pressure sensor (MPL115A1). The barometric pressure can be related to the altitude of the

aircraft.

3.2 Controller Software and PID Algorithm Implementation

3.2.1 Serial Communication

A custom program was written in the C language for each of the micro-controllers. The

full code for both programs is listed in Appendix D. Function libraries were written to read

the MAX6675 and MPL115A1 sensors via a serial protocol interface (SPI). The programs

have a serial communication system that allows the MC1 and MC2 to communicate with

each other and any computer with a serial monitor. The program on the MC1, aside from

reading sensors and implementing the control algorithm, sends sensor values and other data

to the MC2. Text commands entered in the laptop’s serial monitor are used to interface

with the program on the MC1. The purpose of the MC2 is to relay commands entered in the

laptop’s serial monitor to the MC1. It also has to the receive the data from the MC1, print

this data to the laptop’s serial monitor, and display select data to a LCD screen. The serial

communication system uses ASCII characters to control the flow of data. For example,
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when the MC1 sends the measured speed value of 6500 rpm to the MC2 it is in the form

‘6500V’. The ‘V’ character tells the MC2 that the incoming numerical values represent the

measured speed.

3.2.2 Automatic Control Loop

The controller implements the incremental form of the discrete PID algorithm. The

control variable is the value sent to the servo that corresponds to a throttle position. A

change in the throttle position results in the change of the process variable, the rotational

speed of the engine shaft. The control algorithm supports setpoint weighting, derivative

on measurement, low-pass speed measurement filtering, on-line tuning parameter

updating, and throttle servo overdrive protection. The program repeats the following

control sequence if a predefined sample time has passed.

1. Read sensors and update measurement values.

2. Execute PID algorithm if in automatic mode.

3. Report sensor measurements and other data.

The program function that executes the PID algorithm is shown below.
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void velPID ( ) { // PID algori thm , v e l o c i t y ( incrementa l ) form

/∗ Apply 1 s t order low−pass f i l t e r to measured speed . Alpha i s a we igh t ing
f a c t o r between 0 and 1 tha t t ha t determines the a g g r e s s i v ene s s o f the
f i l t e r . S e t t i n g a lpha to zero d i s a b l e s f i l t e r i n g .

∗/
lowpassSpeed = alpha ∗ lastLowpassSpeed + (1−alpha ) ∗measuredSpeed ;

// Ca l cu la t e terms o f PID v e l o c i t y a lgor i thm
// Propor t iona l Term
K1 = kp∗ setpointWeight ∗( se tpo intSpeed − l a s tSe tpo in tSpeed )

+ kp∗( lastMeasuredSpeed − lowpassSpeed ) ;
// In t e g r a l Term
K2 = ki ∗( se tpo intSpeed − lowpassSpeed ) ;
// Der i va t i v e Tem
K3 = kd∗(2∗ lastMeasuredSpeed − lowpassSpeed − lastLastMeasuredSpeed ) ;

// Ca l cu la t e con t ro l v a r i a b l e
output = lastOutput − K1 − K2 − K3;

// Convert output to c l o s e s t i n t e g e r
th r o t t l ePo s = f l o o r ( output + 0 . 5 ) ;

/∗ Prevent ove rd r i v ing o f t h r o t t l e servo and s t a l l i n g o f
engine in the event o f con t ro l v a r i a b l e sa tu ra t i on .

∗/
i f ( th r o t t l ePo s < t h r o t t l e op en ) {

output = (double ) t h r o t t l e op en ;
th r o t t l ePo s = th r o t t l e op en ;

}
i f ( th r o t t l ePo s > t h r o t t l e s a f e ) {

output = (double ) t h r o t t l e s a f e ;
t h r o t t l ePo s = t h r o t t l e s a f e ;

}

// Remember v a r i a b l e s f o r next i t e r a t i o n
lastLowpassSpeed = lowpassSpeed ;
lastLastMeasuredSpeed = lastMeasuredSpeed ;
lastMeasuredSpeed = lowpassSpeed ;
l a s tSe tpo in tSpeed = setpo intSpeed ;
lastOutput = output ;

// Write the t h r o t t l e p o s i t i on to servo .
t h r o t t l e . wr i teMicroseconds ( th r o t t l ePo s ) ;

}

The control variable unit is the pulse-width of the signal to the servo. The way the

throttle is installed an increasing throttle opening corresponds to a decreasing pulse-width.

This requires that the terms of the PID be subtracted from the previous value of the control

variable.

The throttle takes approximately 94 milliseconds to move from idle position to open

throttle. So there is an inherent delay that is less than 94 milliseconds. The controller must
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allow the servo to move to the desired position before giving it a new position. The sample

time of the control algorithm is 100 milliseconds to allow for servo movement.

An important requirement for a feedback controller is bumpless transfer. A switch from

manual to automatic control that does not disrupt the controlled process is a bumpless

transfer. To ensure an uneventful transfer to automatic control the program performs the

following actions immediately after receiving a command to enter automatic control.

• Set reference speed r(tk) to current measured speed y(tk).

• Set r(tk−1) to r(tk).

• Set y(tk−1) and y(tk−2) to y(tk).

• Set control output u(tk) (throttle position) to current manually set value.

• Set all terms of PID algorithm to zero to remove any residual value created by previous

periods of automatic operation.

3.3 Break-in Engine and Tune Carburetor

3.3.1 Carburetor and Fuel System

The OS160FX has a rotary barrel carburetor with a low-speed needle (LSN) valve for

adjusting fuel flow at low speeds and an external high-speed needle (HSN) valve for adjusting

fuel flow at high speeds. Figure 3.6 shows the HSN which is the primary way of controlling

the flow of fuel into the engine. At large throttle openings the HSN is the only fuel valve

that effects the flow. The LSN, shown in Figure 3.7, allows more precise fuel flow control

at low speeds. The LSN consists of a tapered needle that enters a fuel spray-bar as the
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(a) Installation (b) Disassembled view

Figure 3.6: High-speed needle valve (HSN).

throttle opening closes. This is shown in Figure 3.7b. The needle restricts the flow of

fuel at low-speeds while allowing full flow at high-speeds. An adjustment screw, seen in

Figure 3.7a, controls how far the spray-bar extends into the carburetor. This adjustment

determines the range of throttle positions that are affected by the LSN.

(a) Adjustment screw (b) Tapered needle entering spraybar

Figure 3.7: Low-speed needle valve (LSN).

The position of the knob on the HSN and screw on the LSN must be set or ‘tuned’

correctly for good engine performance. The correct position depends on many factors
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including ambient temperature, humidity, altitude, engine wear, and desired performance

characteristics. The HSN and LSN must be tuned together because they effect one another.

The fuel system is shown in Figure 3.8. A 1200 cubic centimeter fuel tank was used with

15 percent nitromethane fuel. The fuel line runs from the exhaust chamber to the tank so

that the tank can be pressurized with exhaust gases. The fuel line runs from the tank to

the HSN with a fuel filter in-line and from the HSN to the carburetor.

Figure 3.8: Engine fuel system.

3.3.2 Start-up Sequence

The engine was started manually. The start-up sequence of the engine was as follows. First

the engine was primed to introduce fuel into the carburetor. This was done by sealing the

top of the carburetor with one hand while rotating the propeller with the other. The throttle

was fully open during this process. Next the glow plug was ignited and the throttle was set

to idle position. The engine was then started by spinning the propeller at approximately

2000 rpm with an electric starter motor. After the engine was started the power source was
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removed from the glow plug. Figure 3.9 shows the use of the starting motor and Figure

3.10 shows the location of the glow plug.

Figure 3.9: Demonstrated use of electric starting motor.

Figure 3.10: Glow plug location.

3.3.3 Break-in Procedure

A new engine is required to go through a break-in procedure. During a break-in procedure

an engine is run at low speeds with a rich air-fuel mixture. The purpose of the break-in

procedure is to allow the moving parts of the engine to ‘mate’ or settle together. This limits

the stresses on the components. The rich air-fuel mixture ensures a well lubricated engine.
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The break-in procedure was conducted as follows. The engine was started and allowed

to run for several minutes at a time, allowing it to cool between runs. Each run was

progressively longer. The engine was operated near idle for the first half-tank of fuel. Next,

the throttle was gradually cycled between quarter and half throttle for a second half-tank of

fuel. Then, the engine was run at half to three-quarter throttle while occasionally bringing

it to full throttle for a tank of fuel. After 2 tanks of fuel the engine was considered broken

in. The tank was not allowed to be completely emptied because an engine that runs out

of fuel has a momentary jump in speed before it dies. This acceleration can damage a new

engine.

3.3.4 Tuning Procedure

The tuning procedure requires making small adjustments (1/8 turns) of the HSN and LSN

and observing how the adjustments effect performance. The speed is monitored but the

judgement of a good tuning was largely based on the sound and temperature of the engine.

It is a process that requires an experienced operator to achieve acceptable performance

throughout the entire speed range.

There were many techniques used to determine the correct carburetor settings but the

following is a procedure that was used often to make sure the engine would run well and

be controllable. The first step was to run the engine at moderate to high speeds to warm

up the engine. Next, the engine was brought to full throttle and the HSN was set to the

position that gave the maximum speed. Typically this setting was too lean and caused the
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engine temperature to be too high. The HSN was richened gradually until the temperature

dropped to an acceptable value. With the HSN set, the LSN was then set to a position

that allowed for smooth acceleration through the speed range. This was an iterative process

because adjustments to the LSN effect the HSN. An acceptable temperature as measured

by the thermocouple was around 160 degrees Celsius.

3.4 Throttle and Speed Relationship

Understanding the effect of the control output variable on the process variable is critical to

controlling a system. In this case the process variable is the rotational speed of the engine

and the control variable is the throttle position. In order to see the relationship between

speed and throttle position, throttle step tests were performed. During a throttle step test

the throttle position was stepped in equal increments and the response of the speed to these

steps was recorded. The results of the throttle step tests are shown in Figures 3.11 and 3.12

. Throttle Step Test A has steps of 20 percent throttle taken every 80 seconds. Throttle

Step Test B has steps of 9.8 percent taken every 40 seconds.

33



www.manaraa.com

0 100 200 300 400 500 600 700
2000

4000

6000

8000

10000

R
o

ta
ti
o

n
a

l 
S

p
e

e
d

 (
rp

m
)

Throttle Step Test

 

 

0 100 200 300 400 500 600 700
20

40

60

80

100

T
h

ro
tt

le
 P

o
s
it
io

n
 (

%
)

Time (seconds)

Measured Speed

Throttle Position

Figure 3.11: Throttle Step Test A.
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Figure 3.12: Throttle Step Test B.

The relationship between throttle position and speed is clear. As expected a larger
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opening of the throttle results in higher speeds. The speed is not steady at a given throttle

position though. Figure 3.11 shows that the speed has tendency to drift or gradually move

away from a value. This drifting of speed is seen most following negative throttle steps

when the engine is slowing down. Figure 3.13 shows that at 40 percent throttle the speed

gradually drops from 4723 rpm to 4278 rpm in a span of 75 seconds. This tendency to drift

is not seen as much during the higher speeds. The speed is particularly unstable at low

speeds near idle.
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Figure 3.13: Gradual speed drop following a negative throttle step.

The results of Throttle Step Test B, Figure 3.12, shows that the the engine performs

differently on the upward speed trajectory then it does on the downward speed trajectory.

More steps must be taken to bring the engine from high speeds to low speeds. This could

be due to the momentum of the shaft and propeller that was produced at higher speeds.

Another potential source is excess fuel in the crankcase that is introduced during the wider
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openings of the throttle. The automatic controller had to counter this phenomenon when

adjusting speed. The average speed at each throttle position was calculated in order to

determine the relationship between speed and throttle position. This relationship is shown

in Figure 3.14.
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Figure 3.14: Relationship between throttle and speed.

A common measure for describing the dynamic behavior of a process is the process

gain. The process gain defines the sensitivity of the output variable to changes in the input

variable and is calculated as shown in Equation 3.2 [15].

K =
∆Output [rpm]

∆Input [%]
(3.2)

The output and input units depend on the process and measurement methods. In this

case the output units are in rpm and the input units are throttle position expressed as a

percentage. The process gain is often dependent on the load or operating point. Figure
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3.15 shows the process gain calculated at each positive step of Throttle Step Test B. The

process gain is 150 rpm
% at step 4 which is more than twice the value seen at steps 3 and

5. This suggests that the speed is most sensitive to changes in throttle when the engine is

transitioning from low to high speeds.
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Figure 3.15: Process gain at different operating points.

3.4.1 Sensitivity to Carburetor Tuning

Specific tests were not completed to investigate the effects of different fuel valve positions

on the engine position. Figure 3.16 shows throttle step test results with three different

carburetor tuning settings. Tuning 1 and 2 were considered good tunings since they provided

a consistent speed response to the throttle steps. The variation seen between Tunings 1 and

2 was expected between any two given tests. Tuning 3 was considered a poor tuning due

to the elevated speeds at small throttle openings and small response to a change in throttle

seen near 5000 rpm.
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Figure 3.16: Performance variations due to different carburetor settings.

3.5 Performance Measures and Goals

With the throttle and speed relationship determined the next step was to test the

performance of the PID algorithm. This involved running the engine and observing the

responses of the measured speed to step changes in the reference speed. The measured

speed and throttle positions were recorded for analysis.

The controller code has a subroutine that allows for programmed reference speed

changes. This allowed for consistent tests of the controller performance. The programmed

reference speed paths are shown in Figure 3.17. Each reference speed path has a 40 second

period between each step. Reference Path A was used most when comparing tuning

parameter combinations because it has large and moderate speed steps. The symmetric

Reference Path B was useful because it showed if the controller corrected for the engines
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performance difference between upward and downward trajectories.
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Figure 3.17: Reference speed test paths.

The performance measures that were used when judging the responses were steady-

state error, settling time, overshoot, steady-state standard error, oscillation amplitude, and

maximum steady-state deviation. A steady-state error of zero was required for all responses

to a reference change. The settling time is the time it takes for the measured speed to reach

its steady-state after a reference command is received. The overshoot is the amount the

speed overshoots the reference speed during the initial response. Only overshoot greater

than 100 rpm was considered overshoot. The steady-state standard error is a measure of

the variation of the measured speed y(t) around a reference speed r(t) during a steady-state
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and is given by the Equation 3.3.

s =

√√√√ 1

N − 1

N∑
i=1

(yi − r)2 (3.3)

where N is the number of samples available during the steady-state period.

Variation from the reference value during steady-state can be caused by a disturbance,

measurement noise, or persistent oscillations due to process or controller dynamics. The

maximum steady-state deviation is the maximum deviation from the reference value

during steady-state. The maximum oscillation amplitude is the maximum amplitude of

any sinusoidal type oscillations seen in a response. The acceptable values for the

performance measures are shown in Table 3.1.

Table 3.1: Performance Measures

Measure Acceptable Value(s)

SS error 0 rpm
Maximum SS deviation -100 rpm to 100 rpm
Settling time < 10 seconds
Maximum overshoot 200 rpm
Maximum oscillation amplitude 100 rpm

3.6 Selection of PID Tuning Parameters

The most challenging part of implementing the PID algorithm was selecting the

appropriate tuning parameters. The parameters were chosen to minimize settling time,

overshoot, and oscillations. It was known that the derivative term adds complications to

controller design, often with limited benefit. For this reason a PI controller was designed
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first. After an acceptable PI controller was designed it was determined whether the

derivative term provided any clear benefit.

The first tests of the PI algorithm required trial-and-error to determine a realistic range

for the tuning parameters which were the proportional gain Kp and the integral gain Ki.

The trial and error tests pointed to a range of 0.10 to 0.01 for Kp and 0.00015 to 0.00001

for Ki with a sample time of 100 milliseconds. The next tests systematically varied the

parameters to determine their effects on the response to Reference Path A. The knowledge

gained from these tests was used to select candidates for the final parameter combination.

These candidates were tested and a best choice was selected based on a compromise between

responsiveness and stability.

Table 3.2: Steps of Reference Path A.

Step 1 3000 rpm to 7000 rpm
Step 2 7000 rpm to 8000 rpm
Step 3 8000 rpm to 5000 rpm
Step 4 5000 rpm to 6000 rpm
Step 5 6000 rpm to 7000 rpm
Step 6 7000 rpm to 4000 rpm

Tests with a moderate Ki and no Kp helped to illustrate the effects of the parameters.

Figure 3.18 shows the speed response with a Ki of 0.000045 and no Kp. The steps of

Reference Path A are referred to as shown in Table 3.2. There is excessive overshoot seen

in the response at step 1, step 3, and step 6. The response also exhibits steady-state

oscillations at 3000, 5000, and 6000 rpm. The oscillations are largest at 6000 rpm. Figure

3.19 shows a change in the response with a lower Ki of 0.000030. The overshoot at step 1

has been nearly eliminated but still exists at step 3 and step 6. There are still oscillations
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but they are smaller. The high magnitude of the overshoots and oscillations were not seen

with moderate levels of Kp during the trial-and-error tests.
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Figure 3.18: Response with Ki = 0.000045 and no Kp.
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Figure 3.19: Response with Ki = 0.000030 and no Kp.
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More tests were run to determine the effect of adding proportional gain. The tables below

summarize how the response changed with the addition and increase of the proportional

gain. The addition of the proportional gain dampened the oscillations and diminished

overshoot but it had a drawback. An increase in proportional gain was accompanied with

a greater settling time that was most evident in positive steps. Note that in Table 3.4 the

large setting times seen with a Kp of 0.00 and 0.02 were due to overshoot that occured.

Table 3.3: Response performance with Ki = 0.000030.

Ki Kp
Overshoot

at 5000 rpm
(rpm)

Oscillation
Amplitude

at 6000 rpm
(rpm)

Settling Time
Step 1

(seconds)

0.00003 0.00 497 358.5 9.3
0.00003 0.01 428 355 5.6
0.00003 0.02 326 363 8.1
0.00003 0.03 298 251 13.7
0.00003 0.04 241 271 15.5
0.00003 0.05 153 187 15.0
0.00003 0.06 189 179 14.9
0.00003 0.07 144 153 14
0.00003 0.08 0 131 15.8

Table 3.4: Response performance with Ki = 0.000045.

Ki Kp
Overshoot

at 5000 rpm
(rpm)

Oscillation
Amplitude

at 6000 rpm
(rpm)

Settling Time
Step 1

(seconds)

0.000045 0.00 645 491 11.32
0.000045 0.01 533 406 15.1
0.000045 0.02 457 291 7.9
0.000045 0.03 413 304 8.2
0.000045 0.04 270 231 10.4
0.000045 0.05 191 280 7.24
0.000045 0.06 183 220 11.3
0.000045 0.07 0 183 11.2
0.000045 0.08 0 100 11.6
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The best response was obtained with a Ki of 0.000030 was with a Kp of 0.080. This

response is shown in Figure 3.20. The oscillation amplitude at 6000 rpm was nearing the

acceptable range with a value of 131 rpm but there was a long settling time of 15.8 seconds.

The best response with a Ki of 0.000045 was also with a Kp of 0.080. It is shown in Figure

3.21. The oscillation amplitude was within the acceptable range, and the overshoot was

eliminated, but the settling time at 7000 rpm was still greater than 10 seconds. The rest of

the plots of the responses listed in Tables 3.3 and 3.4 can be found in Appendix A.
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Figure 3.20: Response with Kp = 0.080 and Ki = 0.000030.

The results of these tests indicated that a larger Ki provides a quicker response but there

must be an appropriate Kp to dampen the integral term without increasing the settling time

to an unacceptable level. Since a faster response was desired, tests were run with a integral

gains of 0.000050 and 0.000055. Table 3.5 outlines the results.
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Figure 3.21: Response with Kp = 0.080 and Ki = 0.000045.

Table 3.5: Response performance with Ki = 0.000050 and 0.000055.

Ki Kp
Overshoot

Step1
(rpm)

Maximum
Deviation
6000 rpm

(rpm)

ST*
Step 1

(seconds)

ST*
Step 2

(seconds)

ST*
Step 5

(seconds)

ST*
Step 6

(seconds)

0.00005 0.060 284 100 5.6 8 5.3 4.8
0.00005 0.065 197 150 8 8.4 8.8 7.4
0.00005 0.070 192 179 10.4 10 8 6.2
0.00005 0.080 127 160 9.44 11.2 10.8 10.3
0.000055 0.065 326 183 9.75 9.5 10.7 5.7
0.000055 0.080 235 143 9.33 5.5 9.8 6.7

*ST=settling time

The quickest response was with a Ki of 0.000050 and a Kp of 0.06. The settling time

at step 1 was only 5.6 seconds but there was a large overshoot of 284 rpm at step 3. A Kp

of 0.065 reduced this overshoot to 197 rpm and still provided a quick response. Increasing

the Kp to 0.07 and 0.08 decreased this overshoot further but increased settling times to an
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unacceptable level. The responses with a Ki of 0.000050 are shown in the figures below.
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Figure 3.22: Response with Kp = 0.060 and Ki = 0.000050.
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Figure 3.23: Response with Kp = 0.065 and Ki = 0.000050.
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Figure 3.24: Response with Kp = 0.070 and Ki = 0.000050.
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Figure 3.25: Response with Kp = 0.080 and Ki = 0.000050.
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It was expected that a Ki of 0.000055 would provide a quicker response than a Ki of

0.000050. Figure 3.26 shows that while the immediate response is quicker with a Ki of

0.000055 the acceleration decreases just before reaches the reference speed. The responses

with a Ki of 0.000055 also had too much overshoot at step 3 and had rapid oscillations at

4000 rpm.
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Figure 3.26: Response with Kp = 0.080 and Ki = 0.000055.

Tests with the derivative term did not provide conclusive results but they were limited.

It is likely that the value of the derivative gain Kd was too low to provide a clear effect. A

process that changes direction within a few samples is typically not benefited by derivative

term. The derivative term is most useful in a slow moving control loop where overshoot is

not acceptable. Furthermore a well tuned PI control is likely to provide better performance

than a moderately tuned PID controller [16]. A PI controller with a Kp of 0.065 and a Ki
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of 0.000050 was chosen as the final controller.

Through further research it was found that the incremental algorithm has a unique

property that can cause issues. The integral term and proportional do not necessarily have

the same sign at a given moment. The signs are the same when the process variable is

moving away from the reference but are opposite when approaching the reference [15]. This

explains why an increasing proportional term caused longer settling times. This unique

property can cause oscillatory behavior if there is not a strong integral term. Modifications

can be made to the algorithm so that the signs of the integral and proportional term

are always the same. This would allow for a quicker response. The property can also

be advantageous because it can effectively dampen the integral term as the reference is

approached. If the modifications were only applied when the process variable was outside

a conditional band around the reference, the algorithm would theoretically allow for quick

response while taking advantage of the integral dampening near the reference [15]. It is

believed this would have given better results.
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4 Results

The final controller met the performance requirements described in Section 3.5 with a few

exceptions. The results the reference path tests are shown in the figures below with a Kp

of 0.065 and a Ki of 0.000050. The largest settling time in the Reference Path A test,

shown in Figure 4.1, was 8.8 seconds and the largest overshoot was 197 rpm. During the

largest step response the speed reached 90 percent of the reference in less than 3 seconds.

There was a single steady-state deviation of 150 rpm from the 6000 rpm reference which

was greater than the acceptable value of 100 rpm. This single deviation was not indicative

of the overall performance and was considered acceptable.
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Figure 4.1: Response to Reference Path A with Kp = 0.065 and Ki = 0.000050.

The Reference Path B test in Figure 4.2 shows that the responses to negative and
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positive steps are comparable. This indicates the the controller can correct for the difference

in engine performance seen between the upward and downward trajectories of the throttle

step tests. There is an overshoot greater than 200 rpm during the second negative step. In

this region of engine operation the LSN starts to effect the fuel flow. This sudden restriction

of the fuel flow was believed to cause this instability. This instability source is unavoidable

with the given carburetor and fuel system.
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Figure 4.2: Response to Reference Path B with Kp = 0.065 and Ki = 0.000050.

The responses to Reference Path C and D, Figure 4.3 and 4.4, show that the controller

performs well when small reference speed commands are given. The high frequency

oscillations in Figure C is measurement noise created by engine vibrations that occurred

at low speeds.
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Figure 4.3: Response to Reference Path C with Kp = 0.065 and Ki = 0.000050.
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Figure 4.4: Response to Reference Path D with Kp = 0.065 and Ki = 0.000050.
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4.1 Long Term Reference Following

Figure 4.5 shows at the controller can maintain a reference speed over a long term period.
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Figure 4.5: Long term reference speed tracking.

4.2 Setpoint Weighting

Figure 4.6 shows the response to Reference Path A if setpoint weighting is enabled. When

compared to Figure 4.1 there is a smoother response to steps 1 and 6. The step 1 response

reaches 90% of the reference value in 4.8 seconds with setpoint weighting compared to 2.9

seconds without. The step 1 settling time increases from 8 seconds to 10.2 seconds. The

oscillations caused by the rapid drop in speed during step 6 are removed with setpoint

weighting. With poor carburetor settings a sudden opening of the throttle would cause the

engine to die. These sudden throttle openings resulting from a large reference step changes

were eliminated with setpoint weighting without a large drop in responsiveness.
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Figure 4.6: Response with setpoint weight of 0.20.

4.3 Bumpless Transfer

Figure 4.7 shows the transfer from manual to automatic control. The red guide lines indicate

the start of automatic control. It is seen that this transfer is a bumpless transfer since there

was no significant disruption of the controlled process. When the command is received

to enter automatic control the reference speed is set to be the last measured speed. The

algorithm keeps the speed near this last measured speed. The speed under manual control

appears to have less variation around its average value than under automatic control. The

standard error of the speed under manual manual control was 45.08 while the steady-state

standard error under automatic control was 46.73. This increase in variance around the

reference speed (average speed in the case of manual control) was considered acceptable.
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Figure 4.7: Successful bumpless transfer from manual to automatic control.

4.4 Idle performance

The engine was able to idle safely at 1800 rpm without issue under PI control. The

manufacture lists 1800 rpm as the lowest practical speed that can be achieved with this

engine [11]. Figure 4.8 shows the speed during idle with a reference speed of 1800 rpm.

There are oscillations at this low speed that are not seen at speeds above 3000 rpm. A

precise control of speed is not required at idle. The controller was required to keep the

engine from stalling at low speeds. The controller met this requirement.
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Figure 4.8: Controller performance with reference speed of 1800 rpm.

4.5 Disturbance Rejection

The disturbances on the engine that effect speed can come in the form of head or cross

winds during flight and internal disturbances such as poor fuel flow and other irregularities.

Figure 4.9 shows the rejection to a disturbance in the form of an emptying fuel tank. While

this particular disturbance will be avoided in practice it helps to illustrate how the algorithm

handles disturbances. As the fuel line nears the bottom of the tank there are sudden drops

in speed. The control algorithm sees this and counters by increasing the value of the control

variable and the speed returns to the reference value with some overshoot. The larger the

drop in speed the greater the overshoot. A final surge of fuel allows the engine to maintain

speed for about 20 seconds before the engine dies.

56



www.manaraa.com

280 290 300 310 320 330 340 350 360 370
5200

5400

5600

5800

6000

6200

6400

6600
Kp = 0.065, Ki = 0.000055

Time (minutes)

R
o

ta
ti
o

n
a

l 
S

p
e

e
d

 (
rp

m
)

 

 

Reference Speed

100 rpm guide

Measured Speed

Figure 4.9: Disturbance in the form of an emptying fuel tank.

4.6 Control Variable Saturation

Figure 4.10 shows the speed response during control variable saturation. When the reference

speed is increased to above the engine speed range the controller tries to bring the speed to

this value but reaches the throttle limit. The throttle stays fully open until the reference

speed is set to an achievable value. At this point the control algorithm resumes normal

operation without a large disruption in the control process.
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Figure 4.10: Control variable saturation.

4.7 Engine Temperature Monitoring

A requirement of the engine controller was that it monitor the temperature during flight.

Figure 4.11 shows the measured values of engine temperature during a Reference Path A

test. Higher speeds result in higher temperatures and a drop in speed allows the engine

to cool. The initial drop in temperature is a result of the engine cooling after a warm up

period. After the first increase in speed the temperature decreases for about 2 seconds

before starting to rise. This is due to a sudden increase in the flow rate of air across the

engine head and a rich air-fuel mixture that results from a wide throttle opening. The

momentary increase in temperature after the first drop in speed is due to a suddenly lean

air-fuel mixture and low air-speed across the engine head.
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Figure 4.11: Engine temperature during a Reference Path A test

4.8 Controller Sensitivity to Carburetor Tuning

It was found that the controller is negatively affected by sub-optimal carburetor tunings.

The main reason for the carburetor to be out of tune was a change in ambient

temperature. In Section 3.4, it was found that the engine is most sensitive to changes in

throttle position when transitioning from low to high speeds. This sensitivity was

magnified by poor carburetor tunings, causing the response to be unstable in this region.

The carburetor was tuned often to limit this sensitivity and ensure a controllable engine.
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5 Conclusions

An engine controller was built to regulate the speed of a small two-stroke engine intended

for use on a small UAV. The controller was developed for the OS160FX engine but it can

be adapted to other comparable engines. The controller monitors the temperature of the

engine and will alert the ground station if there is a unsafe operating temperature. It

can also monitor altitude but the effects of altitude on the engine performance were not

accounted for in the control algorithm. The engine controller was able to reliably regulate

the speed of the OS160FX engine through the entire speed range of the engine. Responses

to reference speed steps smaller than 4000 rpm have settling times less than 10 seconds

with less than 200 rpm overshoot. Deviations from the reference speed at steady-state

are kept under 100 rpm with occasional exceptions. The engine was able to safely idle at

speeds as low as 1800 rpm. The engine controller can prevent the engine from stalling by

dropping too far below this speed. The controller provides good rejection of disturbances

caused by moderate drops and surges in fuel flow. The controller performance was found

to be sensitive to the carburetor’s fuel valve settings. A poorly tuned carburetor caused

instability in the transition region between low and high speeds.

The incremental form of the PID algorithm was suited to the task of small two-stroke

engine feedback control. It was found that only the proportional and integral term of the

PID algorithm were necessary to achieve the performance goals. The derivative term was

switched off by setting the derivative gain to zero. The integral term was the dominant

factor in determining how quickly the engine reached the reference speed. The proportional
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term was necessary to dampen the integral term. An integral gain Ki of 0.000050 and a

proportional gain Kp of 0.065 were chosen as the final tuning parameters. The incremental

form of the PID algorithm allowed the controller to avoid issues related to control variable

saturation and enabled a bumpless transfer from manual to automatic mode.
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6 Future Work and Recommendations

The next step in the development of the engine controller is to test it in flight. This

requires interfacing the engine controller with the UAV’s auto-pilot. The auto-pilot must

send reference speed commands to the engine controller in the form of serial data. The

auto-pilot must also be able to receive serial data from the engine controller so that it

can relay sensor data to the ground station. The components of engine controller should

integrated together in a smaller form than the current controller housing. This would

require the sensors and micro-controller chip to be wired together using a printed PCB

circuit board. Further steps should be taken to limit the effects of engine vibrations on

the sensors to provide long term reliability. The performance of the IRE used to measure

speed was sensitive to dust and drops of fuel. It should be replaced with a more durable

and consistent encoder.

A possible avenue for future research would be to use the simplex method, or other

numerical search method, to automatically tune the PID parameters. Automatic tuning

would allow the controller to adjust for changing conditions and optimize the algorithm for

the current operating point of the engine. The simplex method would perform a pattern

search to find the PID tuning parameter combination that minimizes a performance measure

or a function that incorporates multiple measures.
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Appendix A Additional Test Response Plots
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Appendix B Controller Schematic
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Appendix C Exploded View of Engine
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DescriptionCode No.No.

Type of screw 

C...Cap Screw  M...Oval Fillister-Head Screw
F...Flat Head Screw  N...Round Head Screw  S...Set Screw

O.S. GENUINE PARTS & ACCESSORIES

DescriptionCode No.

The specifications are subject to alteration for improvement without notice.

DescriptionCode No.No.

 Assembly Screw

Exhaust Adaptor
 Retaining Screw (C.M5x20)

E-5010 Silencer Assembly
Glow Plug No.8
Screw Set

Set Screw
"O" Ring (2pcs.)

Needle Assembly

Fuel Outlet

Ratchet Spring

Remote Needle Valve Bracket

Cover Plate 
Gasket Set
Crankshaft
Crankshaft Ball Bearing (R)

Crankcase
Crankshaft Ball Bearing (F)
Thrust Washer

Propeller Lock Nut Set

Carburetor Complete (Type 60F)
Connecting Rod

Piston Pin

Piston
Piston Ring

Cylinder Liner
Cylinder Head

Piston Pin Retainers (2pcs.)

Drive Hub
Woodruff Key

Remote Needle Valve Assembly

Throttle Lever Assembly
Carburetor Rotor
Mixture Control Valve Assembly
    "O" Ring (L)
    "O" Ring (S)
Carburetor Body
Rotor Guide Screw
Fuel Inlet (No.1)
Carburetor Gasket
Carburetor Fixing Screw

Radial Motor Mount
Needle Valve Extension Cable Set
Booster Terminal Kit
3/8" -M5(S) Propeller Locknut Set For Truturn Spinner
Non-Bubble Weight
Super Filter (L)
M5 Blind Nut (10pcs.)
M5 Lock Washer (10sets)
M3.5x10 Cap Screw Set (10pcs.)
Long Socket With Plug Grip
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Appendix D Micro-controller Code

///////////////////////////////////////////////
/////// HOWARD HUGHES ////////////////
////// / / / / | / / / | | / / /////////////////
///// / / / / |/ / / | | / / //////////////////
//// / / / / / | / / | |/ / ///////////////////
/// \ / / | / / / //// PAUL FJARE ////
// COLLEGE OF ENGINEERING ///// MC1 CODE //////
////////////////////////////////////////////////

////////////////
// LIBRARIES //
////////////////
#include <s t d l i b . h> // C Standard General U t i l i t i e s Library
#include <u t i l / de lay . h> // AVR de lay f unc t i on s
#include <Servo . h> // Servo l i b r a r y
#include <MPL115A1 . h> // MPL115A1 barometr ic pre s sure sensor

l i b r a r y
#include <max6675 . h> // MAX6675 K−type thermocouple sensor

l i b r a r y
#include <SPI . h> // SPI l i b r a r y ( r e qu i r ed f o r MPL115A1 and

MAX6675)

//////////////////////////////
// ENGINE UNIQUE PARAMETERS //
//////////////////////////////

// Maximum r e a l i s t i c RPM
const long max RPM = 9000 ;
// Minimum r e a l i s t i c RPM
const long min RPM = 1 ;

//////// SERVO POSITION CONSTANTS ////////
// Pos i t i on o f t h r o t t l e servo at c l o s ed t h r o t t l e
const int t h r o t t l e c l o s e d = 1810 ;
// Pos i t i on o f t h r o t t l e servo at open t h r o t t l e
const int t h r o t t l e o p e n = 1300 ;
// Pos i t i on o f t h r o t t l e servo at i d l e
const int t h r o t t l e i d l e= 1726 ;
// Pos i t i on o f t h r o t t l e servo at minimum t h r o t t l e
// where engine w i l l not s t a l l .
const int t h r o t t l e s a f e = 1810 ;
// Thro t t l e servo po s i t i o n range
const int t h r o t t l e r a n g e = t h r o t t l e c l o s e d − t h r o t t l e o p e n ;

//////////
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// PINS //
//////////
const int t h r o t t l e P i n = 5 ; // t h r o t t l e servo
const int f u e lP in = 3 ; // f u e l v a l v e servo
const int re layPin1 = 4 ; // glow p lug r e l a y
const int re layPin2 = 6 ; // hea te r r e l a y
const int tachometerPin = 2 ; // tachometer

/////////////
// SENSORS //
/////////////
// I n i t i a l i z e thermocouple sensor o b j e c t
const int thermoCS = 10 ; // ch ip s e l e c t pin
MAX6675 thermocouple ( thermoCS ) ;
double minimumTemp = 1 0 0 . 0 ;
double maxTemp = 2 0 0 . 0 ;
// I n i t i a l i z e barometr ic pre s sure sensor o b j e c t
const int baroCS = 9 ; // ch ip s e l e c t pin
const int baroSDN = 8 ; // shutdown pin
MPL115A1 barometer ( baroCS , baroSDN) ;

//SSS
////////////
// SERVOS //
////////////
// I n i t i a l i z e t h r o t t l e servo
Servo t h r o t t l e ;
// I n i t i a l i z e f u e l v a l v e servo
Servo f u e l ;
// Servo p o s i t i o n s
int th ro t t l ePos , fue lPos ;

////////////
// TIMING //
////////////
long Time ; // m i l l i s e c ond s
long now , lastNow , thermoNow , thermoLastNow ;
long reportNow , reportLastNow ; // m i l l i s e c ond s
long before , a f t e r , durat ion ; // m i l l i s e c ond s
long nowTest , lastNowTest ; // m i l l i s e c ond s
long t e s t I n t e r v a l = 40000 ; // m i l l i s e c ond s

////////////////
// TACHOMETER //
////////////////
// Time between pu l s e s from tachometer ( microseconds )
volat i le long per iod ;
volat i le long microseconds ;

79



www.manaraa.com

/////////////////////
// MEASURED VALUES //
/////////////////////

// Temporary s t o rage f o r incoming data
long value ;
double temperature ; // Ce l c iu s
double pre s su r e ; // inHg
double measuredSpeed , se tpo intSpeed ;
double smoothMeasuredSpeed , l a s tSe tpo in tSpeed ;
double lastMeasuredSpeed , lastLastMeasuredSpeed ;
double lowpassSpeed , lastLowpassSpeed ;

//////////////////////////////////
// CONTROL ALGORITHM PARAMETERS //
//////////////////////////////////

// Sample time o f a l gor i thm ( m i l l i s e c ond s )
long SampleTime = 100 ;
// Parameters f o r v e l o c i t y form of a l gor i thm
double K1, K2, K3 ;
// Output parameters
double output , lastOutput ;

// Propor t iona l gain
double Kp = 0 . 0 4 5 ;
// I n t e g r a l gain
double Ki = 0 .000045 ;
// Der i va t i v e gain
double Kd = 0 . 0 ;
double kp , ki , kd ;

double setpointWeight = 1 . 0 ; // s e t to 1 .0 to d i s a b l e e f f e c t o f
s e t p o i n t we i gh t ing

double alpha = 0 . 0 ; // s e t to 0 .0 to d i s a b l e lowpass f i l t e r on
measured speed s i g n a l

//////////////
// BOOLEANS //
//////////////

// Manual o f Automatic (PI )
boolean manual = true ;
// S ta r t or s top t e s t rou t ine
boolean te s tRout ine = fa l se ;
boolean heat ing = fa l se ;
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int t e s t I t e r a t i o n = 0 ;

void setup ( ) {

// I n i t i a l i z e s e r i a l communication
S e r i a l . begin (9600) ;

// Set modes f o r tachometer hardware i n t e r r u p t pin
// and r e l a y pin .
pinMode ( tachometerPin , INPUT) ;
pinMode ( re layPin1 , OUTPUT) ;
pinMode ( re layPin2 , OUTPUT) ;

// Declare hardware i n t e r r u p t pin and
// i n t e r r u p t s e r v i c e rou t ine ( ISR) .

a t ta ch In t e r rup t (0 , tachometer , RISING) ;

// Set t h r o t t l e pin
t h r o t t l e . attach ( t h r o t t l e P i n ) ; // a t t ach servo o b j e c t s to p ins

// Set i n i t i a l t h r o t t l e p o s i t i o n
t h r o t t l e P o s = t h r o t t l e i d l e ;
t h r o t t l e . wr i teMicroseconds ( t h r o t t l e i d l e ) ;

// Set i n i t i a l tuning va l u e s
SetTunings (Kp, Ki ,Kd) ;

}

///////////////
// MAIN LOOP //
///////////////

void loop ( ) { // Main program loop

// Get s e r i a l commands
GetCommands ( ) ;

aux i l l a ry Hea t i ng ( ) ;

manageTestRoutine ( ) ;

// Determine curren t time
now = m i l l i s ( ) ;

i f (now−lastNow >= 80) {

// Take sensor read ings to update va l u e s
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// o f pressure , temperature , and speed .
updateMeasurements ( ) ;

// Run con t r o l a l gor i thm i f in auto mode
i f ( ! manual )

velPID ( ) ;

Time = m i l l i s ( ) ;

// Report sensor and con t r o l a l gor i thm data
ReportData ( ) ;

lastNow = m i l l i s ( ) ;

}
}

///////////////////////
// CONTROL ALGORITHM //
///////////////////////

void velPID ( ) { // PID algor i thm , v e l o c i t y form

/∗ Apply 1 s t order lowpass f i l t e r to measured speed . Alpha i s
a we i gh t ing
f a c t o r between 0 and 1 t ha t t ha t determines the

a g g r e s s i v en e s s o f the
f i l t e r . S e t t i n g a lpha to zero d i s a b l e s f i l t e r i n g .

∗/
lowpassSpeed = alpha ∗ lastLowpassSpeed + (1−alpha ) ∗

measuredSpeed ;

// Ca l cu l a t e terms o f PID v e l o c i t y a l gor i thm
// Propor t iona l Term
K1 = kp∗ setpointWeight ∗( se tpo intSpeed − l a s tSe tpo in tSpeed )

+ kp∗( lastMeasuredSpeed − lowpassSpeed ) ;
// I n t e g r a l Term
K2 = ki ∗( se tpo intSpeed − lowpassSpeed ) ;
// Der i va t i v e Tem
K3 = kd∗(2∗ lastMeasuredSpeed − lowpassSpeed −

lastLastMeasuredSpeed ) ;

// Ca l cu l a t e c on t r o l v a r i a b l e
output = lastOutput − K1 − K2 − K3;

// Convert output to c l o s e s t i n t e g e r
t h r o t t l e P o s = f l o o r ( output + 0 . 5 ) ;
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/∗ Prevent o v e r d r i v i n g o f t h r o t t l e servo and s t a l l i n g o f
engine in the event o f c on t r o l v a r i a b l e s a t u ra t i on .

∗/
i f ( t h r o t t l e P o s < t h r o t t l e o p e n ) {

output = (double ) t h r o t t l e o p e n ;
t h r o t t l e P o s = t h r o t t l e o p e n ;

}
i f ( t h r o t t l e P o s > t h r o t t l e s a f e ) {

output = (double ) t h r o t t l e s a f e ;
t h r o t t l e P o s = t h r o t t l e s a f e ;

}

// Remember v a r i a b l e s f o r next i t e r a t i o n
lastLowpassSpeed = lowpassSpeed ;
lastLastMeasuredSpeed = lastMeasuredSpeed ;
lastMeasuredSpeed = lowpassSpeed ;
l a s tSe tpo in tSpeed = setpo intSpeed ;
lastOutput = output ;

// Write the t h r o t t l e p o s i t i o n to servo .
t h r o t t l e . wr i teMicroseconds ( t h r o t t l e P o s ) ;

}

void SetTunings (double propgain , double i n tga in , double derga in ) {
kp = propgain ;
k i = i n t g a i n ∗ (double ) SampleTime ;
kd = derga in / (double ) SampleTime ;

}

/////////////////////////
// UPDATE MEASUREMENTS //
/////////////////////////
void updateMeasurements ( ) {

/∗∗
∗ Update measured va l u e s o f engine speed , engine head
∗ temperature , and barometr ic pre s sure .
∗/

measuredSpeed = ca l cu l a t eSpeed ( per iod , max RPM, min RPM,
measuredSpeed ) ;

// S e r i a l . p r i n t l n ( m i l l i s ( ) ) ;
detachInte r rupt (0 ) ;
p r e s su r e = barometer . baropPressure ( ) ;
thermoNow = m i l l i s ( ) ;
i f ( thermoNow − thermoLastNow > 300) {

temperature = thermocouple . r e adCe l s i u s ( ) ;
thermoLastNow = m i l l i s ( ) ;

}
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a t ta ch In t e r rup t (0 , tachometer , RISING) ;
// S e r i a l . p r i n t l n ( m i l l i s ( ) ) ;
// durat ion o f t h i s f unc t i on i s about 6 ms

}

//////////////////////////////
// ENGINE SPEED MEASUREMENT //
//////////////////////////////

double ca l cu l a t eSpeed ( long PERIOD uS , long MAX RPM, long MIN RPM,
double DEFAULT RPM) {

/∗∗
∗ This func t i on c a l c u l a t e s the speed o f an engine s h a f t wi th

a
∗ 1 PPR ( pu l s e s per r e v o l u t i o n ) tachometer . The func t i on

re turns
∗ speed in RPM [ rev /min ] .
∗
∗ ///////// PARAMETERS /////////
∗
∗ PERIOD: time between pu l s e s o f the tachometer in

microseconds .
∗ MAXRPM: maximum r e a l i s t i c va lue o f engine speed in RPM.
∗ MIN RPM: minimum r e a l i s t i c va lue o f engine speed in RPM.
∗ DEFAULTRPM: va lue o f speed to re turn i f the va lue o f the
∗ per iod i s not w i th in l im i t s .
∗
∗ ///////// EQUATIONS /////////
∗
∗ speed [ rev /min ] = 60 ,000 ,000 [ microsec /min ] / per iod [

microsec / rev ]
∗
∗ per iod [ microsec / rev ] = 60 ,000 ,000 [ microsec /min ] / rpm [

rev /min ]
∗/

double rpm ;
long pe r i od us = PERIOD uS ;
long max rpm = MAXRPM;
long min rpm = MIN RPM;
double defau l t rpm = DEFAULT RPM;

// Maximum a l l owa b l e per iod
stat ic long period max = 60000000L/min rpm ;
// Minimum a l l owa b l e per iod
stat ic long per iod min = 60000000L/max rpm ;
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// Check t ha t per iod i s w i th in l im i t s
i f ( pe r i od us > per iod min && per i od us < period max )

// Awesome ! Ca l cu l a t e speed
rpm = 60000000.0 / (double ) pe r i od us ;

else
// Use d e f a u l t va lue o f speed
rpm = defau l t rpm ;

return (rpm) ;
}

void tachometer ( ) {
/∗∗
∗ ISR ( In t e r rup t Serv i c e Routine ) t ha t i s t r i g g e r e d when the

m i c ro con t r o l l e r
∗ r e c i e v e s a pu l s e from the tachometer . I t c a l c u l a t e s the

time between the
∗ curren t pu l s e and the prev ious pu lse , the per iod .
∗
∗ Var iab l e s shared between ISR func t i on s and normal f unc t i on s
∗ shou ld be dec l a r ed ” v o l a t i l e ” . This t e l l s the compi ler

t ha t such
∗ v a r i a b l e s might change at any time , and thus the compi ler

must
∗ r e l oad the v a r i a b l e whenever you re f e r ence i t , r a the r than
∗ r e l y i n g upon a copy i t might have in a proces sor r e g i s t e r .

∗/

per iod = micros ( ) − microseconds ;
microseconds = micros ( ) ;

}

void bumplessTransfer ( ) {
/∗∗
∗ This func t i on i s c a l l e d when the program sw i t che s
∗ to automatic mode (PID a lgor i thm i s a c t i v e ) . I t s e t s
∗ a l l terms o f the PID a lgor i thm to zero to remove any
∗ r e s i d u a l va l u e s c rea t ed during prev ious per i od s o f
∗ automatic opera t ion . The s e t p o i n t speed i s s e t to
∗ the most recen t measured speed to prevent an abrupt
∗ jump in speed . The a l gor i thm remembers the con t r o l
∗ output , s e t p o i n t speed , and measuremed speed from
∗ prev ious i t e r a t i o n s . Since the r e has been no prev ious
∗ i t e r a t i o n the s e va l u e s must be s e t to the curren t va l u e s .
∗/

K1 = 0 ;
K2 = 0 ;
K3 = 0 ;
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f i l t e r e d K 3 = 0 ;

output = (double ) t h r o t t l e P o s ;
lastOutput = output ;
s e tpo intSpeed = measuredSpeed ;
l a s tSe tpo in tSpeed = measuredSpeed ;
lowpassSpeed = measuredSpeed ;
lastLowpassSpeed = lowpassSpeed ;
lastLastMeasuredSpeed = measuredSpeed ;
lastMeasuredSpeed = measuredSpeed ;

}

///////////////////////
// AUXILLARY HEATING //
///////////////////////

void aux i l l a ryH ea t i ng ( ) {
i f ( temperature > maxTemp) {

S e r i a l . p r i n t l n ( ”e” ) ;
}
i f ( heat ing && temperature >= minimumTemp) {

d i g i t a l W r i t e ( re layPin1 , LOW) ;
d i g i t a l W r i t e ( re layPin2 , LOW) ;
heat ing = fa l se ;

}
}
//////////////////
// TEST ROUTINE //
//////////////////

void manageTestRoutine ( ) {

stat ic long s t ep s = 22 ;
long t e s tSe tpo in tSpeed [ 2 2 ] =
{6000 ,6200 ,6400 ,6600 ,6800 ,7000 ,7200 ,7400 ,7600 ,7800 ,
8000 ,7800 ,7600 ,7400 ,7200 ,7000 ,6800 ,6600 ,6400 ,6200 ,6000 ,2999} ;

i f ( t e s tRout ine ) {
nowTest = m i l l i s ( ) ;
i f ( nowTest−lastNowTest > t e s t I n t e r v a l ) {

// t h r o t t l ePo s = t e s tT h r o t t l e [ t e s t I t e r a t i o n ] ;
// t h r o t t l e . wr i teMicroseconds ( t h r o t t l ePo s ) ;
se tpo intSpeed = tes tSe tpo in tSpeed [ t e s t I t e r a t i o n ] ;
t e s t I t e r a t i o n += 1 ;

i f ( t e s t I t e r a t i o n > s teps−1 ) {
t e s tRout ine = fa l se ;
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t e s t I t e r a t i o n = 0 ;
}
lastNowTest = m i l l i s ( ) ;

}
}

}

//////////////////
// GET COMMANDS //
//////////////////

void GetCommands ( ) {
i f ( S e r i a l . a v a i l a b l e ( ) > 0) {

char ch = S e r i a l . read ( ) ;
i f ( ch >= ’ 0 ’ && ch <= ’ 9 ’ ) {

// accumulate the va lue and put accumlated va l u e s in
array

value = ( value ∗10) + ( ch − ’ 0 ’ ) ;
}
else {

switch ( ch ) {

//// THROTTLE ////
case ’ t ’ : // s e t t h r o t t l e p o s i t i o n

i f ( va lue >= t h r o t t l e o p e n && value <=
t h r o t t l e c l o s e d ) {
t h r o t t l e P o s = value ;
t h r o t t l e . wr i teMicroseconds ( t h r o t t l e P o s ) ;

}
break ;

case ’ z ’ : // t h r o t t l e p o s i t i o n to c l o s ed ( k i l l engine
)
t h r o t t l e . wr i teMicroseconds ( t h r o t t l e c l o s e d ) ;
t h r o t t l e P o s = t h r o t t l e c l o s e d ;
break ;

case ’ x ’ : // t h r o t t l e p o s i t i o n to f u l l y open
t h r o t t l e . wr i teMicroseconds ( t h r o t t l e o p e n ) ;
t h r o t t l e P o s = t h r o t t l e o p e n ;
break ;

case ’ a ’ : // t h r o t t l e to i d l e p o s i t i o n
t h r o t t l e . wr i teMicroseconds ( t h r o t t l e i d l e ) ;
t h r o t t l e P o s = t h r o t t l e i d l e ;
break ;

case ’ q ’ : // open t h r o t t l e by 10
i f ( t h r o t t l e P o s >= t h r o t t l e o p e n + 10) {

t h r o t t l e P o s −= 10 ;
t h r o t t l e . wr i teMicroseconds ( t h r o t t l e P o s ) ;

}
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break ;
case ’w ’ : // c l o s e t h r o t t l e by 10

i f ( t h r o t t l e P o s <= t h r o t t l e c l o s e d − 10) {
t h r o t t l e P o s += 10 ;
t h r o t t l e . wr i teMicroseconds ( t h r o t t l e P o s ) ;

}
break ;

case ’Q ’ : // open t h r o t t l e by 100
i f ( t h r o t t l e P o s >= t h r o t t l e o p e n + 100) {

t h r o t t l e P o s −= 100 ;
t h r o t t l e . wr i teMicroseconds ( t h r o t t l e P o s ) ;

}
break ;

case ’W’ : // c l o s e t h r o t t l e by 100
i f ( t h r o t t l e P o s <= t h r o t t l e c l o s e d − 100) {

t h r o t t l e P o s += 100 ;
t h r o t t l e . wr i teMicroseconds ( t h r o t t l e P o s ) ;

}
break ;

//// SETPOINT SPEED ////
case ’ s ’ : // s e t s e t p o i n t speed va lue

i f ( va lue >= 0 && value <= max RPM) {
se tpo intSpeed = ( f loat ) va lue ;

}
break ;

case ’ b ’ : // increa se s e t p o i n t speed by 100
i f ( se tpo intSpeed <= max RPM − 100 .0 )

se tpo intSpeed += 1 0 0 . 0 ;
break ;

case ’ n ’ : // decrease s e t p o i n t speed by 100
i f ( se tpo intSpeed >= 100 .0 )

se tpo intSpeed −= 1 0 0 . 0 ;
break ;

case ’B ’ : // increa se s e t p o i n t speed by 1000
i f ( se tpo intSpeed <= max RPM − 1000 .0 )

se tpo intSpeed += 1 0 0 0 . 0 ;
break ;

case ’N ’ : // decrease s e t p o i n t speed by 1000
i f ( se tpo intSpeed >= 1000 .0 )

se tpo intSpeed −= 1 0 0 0 . 0 ;
break ;

//// TUNING PARAMS ////
case ’ j ’ : // increa se prop . gain by 0.001

Kp += 0 . 0 0 1 ;
SetTunings (Kp, Ki , Kd) ;
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break ;
case ’ k ’ : // decrease prop . gain by 0.001

i f (Kp >= 0.001 ) {
Kp −= 0 . 0 0 1 ;
SetTunings (Kp, Ki , Kd) ;

}
break ;

case ’ J ’ : // increa se prop . gain by 0.01
Kp += 0 . 0 1 ;
SetTunings (Kp, Ki , Kd) ;
break ;

case ’K ’ : // decrease prop . gain by 0.01
i f (Kp >= 0 . 0 1 ) {

Kp −= 0 . 0 1 ;
SetTunings (Kp, Ki , Kd) ;

}
break ;

case ’ y ’ : // increa se i n t e g r a l gain by 0.0000001
Ki += 0 .000001 ;
SetTunings (Kp, Ki , Kd) ;
break ;

case ’ u ’ : // decrease i n t e g r a l gain by 0.0000001
i f ( Ki >= 0.000001) {

Ki −= 0.000001 ;
SetTunings (Kp, Ki , Kd) ;

}
break ;

case ’Y ’ : // increa se i n t e g r a l gain by 0.00001
Ki += 0 . 0000 1 ;
SetTunings (Kp, Ki , Kd) ;
va lue = 0 ;
break ;

case ’U ’ : // decrease i n t e g r a l gain by 0.00001
i f ( Ki >= 0.00001) {
Ki −= 0 .000 01 ;

SetTunings (Kp, Ki , Kd) ;
}
break ;

case ’ g ’ : // increa se d e r i v a t i v e gain by 0.01
Kd += 0 . 0 1 ;
SetTunings (Kp, Ki , Kd) ;
break ;

case ’ h ’ : // decrease d e r i v a t i v e gain by 0.01
i f (Kd >= 0 . 0 1 ) {

Kd −= 0 . 0 1 ;
SetTunings (Kp, Ki , Kd) ;

}
break ;
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case ’G ’ : // increa se d e r i v a t i v e gain by 0.1
Kd += 0 . 1 ;
SetTunings (Kp, Ki , Kd) ;
break ;

case ’H ’ : // decrease d e r i v a t i v e gain by 0.1
i f (Kd >= 0 . 1 ) {

Kd −= 0 . 1 ;
SetTunings (Kp, Ki , Kd) ;

}
break ;

case ’ d ’ : // increa se s e t p o i n t we igh t
setpointWeight += 0 . 0 5 ;
break ;

case ’D ’ : // decrease d e r i v a t i v e gain by 0.0000001
i f ( setpointWeight >= 0 . 0 5 )

setpointWeight −= 0 . 0 5 ;
break ;
case ’ ( ’ : // increa se a lpha

alpha += 0 . 0 5 ;
break ;

case ’ ) ’ : // decrease a lpha
i f ( alpha >= 0 . 0 5 )

alpha −= 0 . 0 5 ;
break ;

//// BOOLEANS ////
case ’m’ : // enab l e or d i s a b l e auto mode

manual = ! manual ;
i f ( ! manual ) {

bumplessTransfer ( ) ;

}
break ;

case ’ o ’ : // i n i t i a t e or terminate t e s t rou t ine
t e s tRout ine = ! te s tRout ine ;
break ;

case ’O ’ : // r e s e t t e s t I t e r a t i o n
t e s t I t e r a t i o n = 0 ;
break ;

case ’ r ’ : // t o g g l e a u x i l l a r y hea t ing on/ o f f
heat ing = ! heat ing ;
break ;

}

value = 0 ;
}

}
}
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/////////////////
// REPORT DATA //
/////////////////

void ReportData ( ) {

// send con t r o l mode s t a t e manual/ auto
S e r i a l . p r i n t ( manual ) ;
S e r i a l . p r i n t l n ( ” ! ” ) ;
d e l a y u s (100) ;

// send t e s t rou t ine s t a t e on/ o f f
S e r i a l . p r i n t ( t e s tRout ine ) ;
S e r i a l . p r i n t l n ( ”&” ) ;
d e l a y u s (100) ;

// send hea t ing s t a t e on/ o f f
S e r i a l . p r i n t ( heat ing ) ;
S e r i a l . p r i n t l n ( ”R” ) ;
d e l a y u s (100) ;

// send curren t time
S e r i a l . p r i n t (Time) ;
S e r i a l . p r i n t l n ( ”T” ) ;
d e l a y u s (100) ;

// send t h r o t t l e p o s i t i o n
S e r i a l . p r i n t ( t h r o t t l e P o s ) ;
S e r i a l . p r i n t l n ( ”F” ) ;
d e l a y u s (100) ;

// send pres sure
S e r i a l . p r i n t ( p r e s su r e ∗10 . 0 , 0 ) ;
S e r i a l . p r i n t l n ( ”P” ) ;
d e l a y u s (100) ;

// send temperature
S e r i a l . p r i n t ( temperature , 0 ) ;
S e r i a l . p r i n t l n ( ”C” ) ;
d e l a y u s (100) ;

// send Kp
S e r i a l . p r i n t (Kp∗1000 .0 , 0 ) ;
S e r i a l . p r i n t l n ( ”{” ) ;
d e l a y u s (100) ;

// send Ki
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S e r i a l . p r i n t ( Ki ∗1000000 .0 ,0 ) ;
S e r i a l . p r i n t l n ( ”}” ) ;
d e l a y u s (100) ;

// send Kd
S e r i a l . p r i n t (Kd∗1000 .0 , 0 ) ;
S e r i a l . p r i n t l n ( ” [ ” ) ;
d e l a y u s (100) ;

// send s e t p o i n t speed
S e r i a l . p r i n t ( setpointSpeed , 0 ) ;
S e r i a l . p r i n t l n ( ”S” ) ;
d e l a y u s (100) ;

// send lowpass speed
S e r i a l . p r i n t ( lowpassSpeed ∗100 .0 , 0 ) ;
S e r i a l . p r i n t l n ( ”#” ) ;
d e l a y u s (100) ;

// send measure speed
// always send l a s t because i t t e l l s
// MC2 when i t i s time to p r i n t va l u e s
// to s e r i a l monitor .
S e r i a l . p r i n t ( measuredSpeed ∗100 .0 , 0 ) ;
S e r i a l . p r i n t l n ( ”V” ) ;
d e l a y u s (100) ;
de lay ms (5) ;

}

////////////////////////////////////////////////
/////// HOWARD HUGHES ////////////////
////// / / / / | / / / | | / / /////////////////
///// / / / / |/ / / | | / / //////////////////
//// / / / / / | / / | |/ / ///////////////////
/// \ / / | / / / //// PAUL FJARE ////
// COLLEGE OF ENGINEERING ///// MC2 CODE /////
////////////////////////////////////////////////

////////////////
// LIBRARIES //
////////////////
#include <s t d l i b . h> // C Standard General U t i l i t i e s Library
#include <u t i l / de lay . h> // AVR de lay f unc t i on s
#include <Liqu idCrys ta l . h> // LCD Library
// Create LCD l i b r a r y o b j e c t
Liqu idCrys ta l l cd (13 , 12 , 8 , 9 , 10 , 11) ; // l c d ( rs , e , D4, D5, D6

, D7)
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/////////////////////////////
// ENGINE UNIQUE PARAMETERS //
//////////////////////////////

// Maximum r e a l i s t i c RPM
const long max RPM = 9000 ;
// Minimum r e a l i s t i c RPM
const long min RPM = 1 ;

//////// SERVO POSITION CONSTANTS ////////
// Pos i t i on o f t h r o t t l e servo at c l o s ed t h r o t t l e
const int t h r o t t l e c l o s e d = 1810 ;
// Pos i t i on o f t h r o t t l e servo at open t h r o t t l e
const int t h r o t t l e o p e n = 1300 ;
// Pos i t i on o f t h r o t t l e servo at i d l e
const int t h r o t t l e i d l e= 1746 ;
// Pos i t i on o f t h r o t t l e servo at minimum t h r o t t l e
// where engine w i l l not s t a l l .
const int t h r o t t l e s a f e = 1756 ;

//////////
// PINS //
//////////
// Potent iometer knob c o n t r o l l i n g t h r o t t l e
int thrott leKnobPin = 8 ;
// Potent iometer knob c o n t r o l l i n g t h r o t t l e
int fuelKnobPin = 9 ;

////////////
// TIMING //
////////////
long now ;
long lastNow ;
long Time ;

////////////
// VALUES //
////////////
// Temporary s t o rage f o r incoming data
long value ;

double temperature ; // Ce l c iu s
double pre s su r e ; // inHg
double measuredSpeed , lastMeasuredSpeed , lowpassSpeed ; // RPM
double se tpo intSpeed ; // RPM
int fue lPos , l a s tFue lPos ;

// Contro l Algorithm Parameters
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double Kp, Ki , Kd;
double K1, K2, K3, f i l t e r e d K 3 ;
double e r ror , l a s tEr ro r , l a s t L a s t E r r o r ;
double output ;

//////////////
// BOOLEANS //
//////////////

// Manual o f Automatic (PI )
boolean manual ;
// S ta r t or s top t e s t rou t ine
boolean te s tRout ine ;
boolean heat ing ;

///////////
// SETUP //
///////////

void setup ( ) {
S e r i a l . begin (9600) ; // PC s e r i a l
S e r i a l 1 . begin (9600) ; // Wire less s e r i a l
l cd . begin (20 ,4 ) ;
l cd . d i s p l a y ( ) ;

}

///////////////
// MAIN LOOP //
///////////////

void loop ( ) {
getCommands ( ) ;
getReportedData ( ) ;

now = m i l l i s ( ) ;
i f ( ( now−lastNow ) >= 100) {

i f ( KnobControl ) {
s e t T h r o t t l e ( ) ;

}
updateLCD ( ) ;

lastNow = now ;
}

}

//////////////////
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// GET COMMANDS //
//////////////////

void getCommands ( ) {
/∗Get commands from s e r i a l monitor and r e l a y t h e s e commands
to o ther m i c ro con t r o l l e r . ∗/
i f ( S e r i a l . a v a i l a b l e ( ) > 0) {

char ch = S e r i a l . read ( ) ;
i f ( ch >= ’ 0 ’ && ch <= ’ 9 ’ ) {

// accumulate the va lue and put accumlated va l u e s in
array

value = ( value ∗10) + ( ch − ’ 0 ’ ) ;
}
else {

switch ( ch ) {

case ’ t ’ : // s e t t h r o t t l e p o s i t i o n ex . 1600 t
i f ( va lue >= t h r o t t l e o p e n && value <=

t h r o t t l e c l o s e d ) {
S e r i a l 1 . p r i n t ( va lue ) ;

}
value = 0 ;
break ;

case ’ s ’ : // s e t s e t p o i n t speed va lue
i f ( va lue >= 0 && value <= max RPM) {

S e r i a l 1 . p r i n t ( va lue ) ;
}
value = 0 ;
break ;

}

S e r i a l 1 . p r i n t l n ( ch ) ;
va lue = 0 ;

}

}
}

//////////////
// GET DATA //
//////////////

void getReportedData ( ) {
i f ( S e r i a l 1 . a v a i l a b l e ( ) > 0) {

char ch = S e r i a l 1 . read ( ) ;
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i f ( ch >= ’ 0 ’ && ch <= ’ 9 ’ ) {
// Accumulate the va lue
value = ( value ∗10) + ( ch − ’ 0 ’ ) ;

}
else {

switch ( ch ) {
case ’ ! ’ : // ge t curren t time

manual = value ;
break ;

case ’& ’ : // ge t t e s t rou t ine s t a t e
t e s tRout ine = value ;
break ;

case ’R ’ : // ge t hea t ing s t a t e on/ o f f
heat ing = value ;
break ;

case ’T ’ : // ge t Time
Time = value ;
break ;

case ’F ’ : // ge t t h r o t t l e p o s i t i o n
t h r o t t l e P o s = value ;
break ;

case ’#’ : // ge t lowpass speed
lowpassSpeed = (double ) va lue / 1 0 0 . 0 ;
break ;

case ’ S ’ : // ge t s e t p o i n t speed
se tpo intSpeed = (double ) va lue ;
break ;

case ’P ’ : // ge t pre s sure
pre s su r e = (double ) va lue / 1 0 . 0 ;
break ;

case ’C ’ : // ge t temperature
temperature = (double ) va lue ;
break ;

case ’ I ’ :
K1 = (double ) va lue / 1 0 0 . 0 ;
break ;

case ’E ’ :
K2 = (double ) va lue / 1 0 0 . 0 ;
break ;

case ’ v ’ :
K3 = (double ) va lue / 1 0 0 . 0 ;
break ;

case ’ { ’ : // ge t Kp
Kp = (double ) va lue / 1000 . 0 ;
break ;

case ’ } ’ : // ge t Ki
Ki = (double ) va lue /1000000 .0 ;
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break ;
case ’ [ ’ : // ge t Kd

Kd = (double ) va lue / 1000 . 0 ;
break ;

case ’X ’ : // ge t a lpha
alpha = (double ) va lue / 1 0 0 . 0 ;

case ’M’ : // ge t s e t p o i n t we igh t
setpointWeight = (double ) va lue / 1 0 0 . 0 ;

case ’V ’ : // ge t measured speed
measuredSpeed = (double ) va lue / 1 0 0 . 0 ;
i f ( measuredSpeed != lastMeasuredSpeed )

logData ( ) ;
break ;

}
value = 0 ;

}
}

}

/////////////////////////
// DISPLAY DATA ON LCD //
/////////////////////////

void updateLCD ( ) {

/∗∗
///////////////////// LCD MAP ///////////////////
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 | K i 0 . 0 0 0 0 0 0 − − − K p 0 . 0 0 0
1 | K d 0 . 0 0 0 − − − M A N − A U X − T R
2 | y 0 0 0 0 0 − r 0 0 0 0 0 − c o 0 0 0 0
3 | 0 0 0 ∗ C − 0 0 . 0 i n H g − −
∗/

l cd . c l e a r ( ) ; // c l e a r a l l c ha rac t e r s on screen

/// LINE 0 ///

l cd . se tCursor (0 , 0 ) ; // l c d . se tCursor ( co l , row )
l cd . p r i n t ( ”Ki” ) ;
l cd . p r i n t ( Ki , 6 ) ;

l cd . se tCursor (13 ,0 ) ;
l cd . p r i n t ( ”Kp” ) ;
l cd . p r i n t (Kp, 3 ) ;
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/// LINE 1 ///
l cd . se tCursor (0 , 1 ) ;
l cd . p r i n t ( ”Kd” ) ;
l cd . p r i n t (Kd, 3 ) ;

l cd . se tCursor (10 ,1 ) ;
i f ( ! manual )

l cd . p r i n t ( ”AUTO” ) ;

l cd . se tCursor (14 ,1 ) ;
i f ( heat ing )

l cd . p r i n t ( ”AUX” ) ;

l cd . se tCursor (18 ,1 ) ;
i f ( t e s tRout ine )

l cd . p r i n t ( ”TR” ) ;

/// LINE 2 ///

l cd . se tCursor (0 , 2 ) ;
l cd . p r i n t ( ”PV” ) ;
l cd . p r i n t ( measuredSpeed , 0 ) ;

l cd . se tCursor (8 , 2 ) ;
l cd . p r i n t ( ”SP” ) ;
l cd . p r i n t ( setpo intSpeed , 0 ) ;

l cd . se tCursor (15 , 2) ;
l cd . p r i n t ( ”T” ) ;
l cd . p r i n t ( t h r o t t l e P o s ) ;

/// LINE 3 ///

l cd . se tCursor (0 , 3 ) ;
l cd . p r i n t ( temperature , 0 ) ;
l cd . p r i n t ( ( char ) 223) ;
l cd . p r i n t ( ”C” ) ;

l cd . se tCursor (6 , 3 ) ;
l cd . p r i n t ( pres sure , 1 ) ;
l cd . p r i n t ( ” inHg” ) ;

}

//////////////
// LOG DATA //
//////////////
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void logData ( ) {
S e r i a l . p r i n t (Time) ;
S e r i a l . p r i n t ( ” , ” ) ;
d e l a y u s (100) ;

S e r i a l . p r i n t (Kp, 3 ) ;
S e r i a l . p r i n t ( ” , ” ) ;
d e l a y u s (100) ;

S e r i a l . p r i n t ( Ki , 6 ) ;
S e r i a l . p r i n t ( ” , ” ) ;
d e l a y u s (100) ;

S e r i a l . p r i n t (Kd, 3 ) ;
S e r i a l . p r i n t ( ” , ” ) ;
d e l a y u s (100) ;

S e r i a l . p r i n t ( t h r o t t l e P o s ) ;
S e r i a l . p r i n t ( ” , ” ) ;
d e l a y u s (100) ;

S e r i a l . p r i n t ( se tpo intSpeed ) ;
S e r i a l . p r i n t ( ” , ” ) ;
d e l a y u s (100) ;

S e r i a l . p r i n t ( temperature ) ;
S e r i a l . p r i n t ( ” , ” ) ;
d e l a y u s (100) ;

S e r i a l . p r i n t ( lowpassSpeed ) ;
S e r i a l . p r i n t ( ” , ” ) ;
d e l a y u s (100) ;

S e r i a l . p r i n t ( measuredSpeed ) ;
S e r i a l . p r i n t ( ” , ” ) ;
d e l a y u s (100) ;

S e r i a l . p r i n t l n ( ) ;
lastMeasuredSpeed = measuredSpeed ;
de lay ms (10) ;

}
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